113 research outputs found

    TaskGenX: A Hardware-Software Proposal for Accelerating Task Parallelism

    Get PDF
    As chip multi-processors (CMPs) are becoming more and more complex, software solutions such as parallel programming models are attracting a lot of attention. Task-based parallel programming models offer an appealing approach to utilize complex CMPs. However, the increasing number of cores on modern CMPs is pushing research towards the use of fine grained parallelism. Task-based programming models need to be able to handle such workloads and offer performance and scalability. Using specialized hardware for boosting performance of task-based programming models is a common practice in the research community. Our paper makes the observation that task creation becomes a bottleneck when we execute fine grained parallel applications with many task-based programming models. As the number of cores increases the time spent generating the tasks of the application is becoming more critical to the entire execution. To overcome this issue, we propose TaskGenX. TaskGenX offers a solution for minimizing task creation overheads and relies both on the runtime system and a dedicated hardware. On the runtime system side, TaskGenX decouples the task creation from the other runtime activities. It then transfers this part of the runtime to a specialized hardware. We draw the requirements for this hardware in order to boost execution of highly parallel applications. From our evaluation using 11 parallel workloads on both symmetric and asymmetric multicore systems, we obtain performance improvements up to 15×, averaging to 3.1× over the baseline.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 671697 and No. 779877. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal fellowship number RYC-2016-21104. Finally, the authors would like to thank Thomas Grass for his valuable help with the simulator.Peer ReviewedPostprint (author's final draft

    Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit

    Full text link
    We present a scaling analysis of electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube length within the coherent transport regime, which takes fully into account atomic-scale electronic structure and three-dimensional electrostatics of the metal-nanotube interface using a real-space Green's function based self-consistent tight-binding theory. As the first example, we examine devices formed by attaching finite-size single-wall carbon nanotubes (SWNT) to both high- and low- work function metallic electrodes through the dangling bonds at the end. We analyze the nature of Schottky barrier formation at the metal-nanotube interface by examining the electrostatics, the band lineup and the conductance of the metal-SWNT molecule-metal junction as a function of the SWNT molecule length and metal-SWNT coupling strength. We show that the confined cylindrical geometry and the atomistic nature of electronic processes across the metal-SWNT interface leads to a different physical picture of band alignment from that of the planar metal-semiconductor interface. We analyze the temperature and length dependence of the conductance of the SWNT junctions, which shows a transition from tunneling- to thermal activation-dominated transport with increasing nanotube length. The temperature dependence of the conductance is much weaker than that of the planar metal-semiconductor interface due to the finite number of conduction channels within the SWNT junctions. We find that the current-voltage characteristics of the metal-SWNT molecule-metal junctions are sensitive to models of the potential response to the applied source/drain bias voltages.Comment: Minor revision to appear in Phys. Rev. B. Color figures available in the online PRB version or upon request to: [email protected]

    Transient movements of a deep-water flatfish in coastal waters: Implications of inshore-offshore connectivity for fisheries management

    Get PDF
    1. Globally, small-scale inshore fisheries are being recognized as highly beneficial for underdeveloped coastal communities since they directly contribute to local economies. Community coastal fisheries, however, may target species that are simultaneously harvested by large commercial vessels in adjacent offshore waters, creating uncertainty over stock units and connectivity that complicate management. 2. Greenland halibut Reinhardtius hippoglossoides, a commercially important flatfish species in the Arctic, were tagged in Scott Inlet, coastal Baffin Island, Canada, with acoustic transmitters and tracked for a 1-year period. Our aim was to measure fish movement and connectivity between inshore habitats, where Inuit fisheries are developing, and offshore waters, where an established commercial fishery operates. Four movement metrics were established, and cluster analysis and a mixed effects model were used to define movement types and identify environmental covariates of the presence/absence within the coastal environment respectively. 3. Two distinct movement patterns were characterized for Greenland halibut; the majority were transients that were no longer detected inshore by the end of November (n = 47, 72%), and a smaller group of intermittently resident fish that moved into the offshore at the same time as transient fish, but returned to the coastal environment in the winter (n = 8, 12%), with the remainder being undefined. The presence of Greenland halibut in the inshore was negatively correlated with ice cover, indicating that fish moved offshore as sea ice formed. 4. Synthesis and applications. Greenland halibut were previously thought to be highly resident within the coastal environment of Baffin Bay; however, our data demonstrates that this is not true for all areas. In Scott Inlet and adjacent coastal regions, Greenland halibut exhibit complex inshore-offshore connectivity, suggesting inshore and offshore fisheries require a shared quota. We recommend that in the face of developing global small-scale coastal fisheries, improved understanding of stock connectivity between environments is required to sustainably manage commercial fish species

    SAVE: Towards Efficient Resource Management in Heterogeneous System Architectures

    No full text

    Introduction to mm-Wave Silicon Devices, Circuits, and Systems

    No full text
    • …
    corecore